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BACKGROUND
Cerebral cavernous malformations (CCMs) are common sporadic and inherited 
vascular malformations of the central nervous system. Although familial CCMs are 
linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the 
genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely 
understood.

METHODS
We developed two mouse models harboring mutations identified in human me-
ningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We 
performed targeted DNA sequencing of surgically resected CCMs from patients 
and confirmed our findings by droplet digital polymerase-chain-reaction analysis.

RESULTS
We found that in mice expressing one of two common genetic drivers of menin-
gioma — Pik3caH1047R or AKT1E17K — in PGDS-positive cells, a spectrum of typical 
CCMs develops (in 22% and 11% of the mice, respectively) instead of meningio-
mas, which prompted us to analyze tissue samples from sporadic CCMs from 88 
patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 
1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored 
mutations in the CCM genes. We analyzed lesions induced by the activating muta-
tions Pik3caH1074R and AKT1E17K in mice and identified the PGDS-expressing pericyte 
as the probable cell of origin.

CONCLUSIONS
In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to 
a greater extent than mutations in any other gene. The contribution of somatic 
mutations in the genes that cause familial CCMs was comparatively small. (Fund-
ed by the Fondation ARC pour la Recherche contre le Cancer and others.)
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Cerebral cavernous malformations 
(CCMs) are vascular lesions of the central 
nervous system that are composed of ab-

normally enlarged capillary cavities without inter-
vening brain parenchyma; the condition affects 
1 in 200 to 250 persons.1 Although they are 
primarily characterized by subclinical bleeding, 
CCMs can lead to seizures and hemorrhagic stroke 
with substantial neurologic complications, espe-
cially when localized in the brain stem. More 
than 80% of CCMs occur sporadically2; patients 
with familial CCMs harbor biallelic germline 
and somatic loss-of-function mutations in one of 
three “CCM genes,” which affect endothelium 
stabilization: Krev interaction trapped 1 (KRIT1, 
also called CCM1), cerebral cavernous malforma-
tion 2 (CCM2), and programmed cell death 10 
(PDCD10, also called CCM3).3 At least some spo-
radic CCMs also involve somatic mutations in 
these genes,4-6 but their genetic architecture re-
mains poorly understood.

Meningiomas, the most common primary tu-
mors of the central nervous system,7 are caused 
by recurrent mutations in NF2, PIK3CA (encoding 
phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit A), and AKT1 (encoding serine 
threonine kinase 1).8 Activating mutations in 
PIK3CA, an oncogene that is mutated in 9% of hu-
man cancers (https://cancer . sanger . ac . uk/  cosmic), 
are present in 4 to 7% of meningiomas, whereas 
another 10% of meningiomas (primarily menin-
gothelial skull-base tumors) harbor the common 
AKT1E17K oncogenic mutation.9,10 In meningioma, 
PIK3CA as well as AKT1E17K mutations typically co-
occur with mutations in other genes, most nota-
bly TRAF7,9,10 which has raised doubts as to 
whether PIK3CA or AKT1 mutations per se can 
drive tumorigenesis.

To address this question, we generated two 
mouse models to selectively express Pik3caH1047R, the 
most common meningioma-associated PIK3CA mu-
tation, and AKT1E17K in prostaglandin D2 synthase 
(PGDS)–positive cells. The unexpected observation 
of typical CCMs in both models then motivated 
us to investigate the possible involvement of 
PIK3CA and AKT1 mutations in sporadic CCMs.

Me thods

Mouse Models

We previously showed that meningeal precursor 
cells expressing PGDS are the cells of origin for 

diverse meningioma histologic subtypes in mice.11,12 
To induce activation of Pik3ca in PGDS-express-
ing cells in mice, we bred R26-Pik3caH1047R mice 
with homozygous PGDSCre mice.11,13 We also 
forced the expression of AKT1E17K in cells express-
ing PGDS by injecting a FLAG-tagged RCAS-
AKT1E17K vector — either subdurally at the con-
vexity or intraorbitally at the skull base — into 
PGDStv-a neonates, as described previously.12,14 
Additional details on PGDS expression and on 
both mouse models are provided in Supplemen-
tary Appendix 1, available with the full text of 
this article at NEJM.org.

Study Patients

Patients who had been treated for sporadic CCMs 
at Pitié-Salpêtrière Hospital, Paris, between 2010 
and 2018 (82 patients) or at Caen Hospital, Caen, 
France, between 2008 and 2017 (6 patients) were 
included in the study. Patients with a family his-
tory of cavernomas or multiple lesions on preop-
erative T2-weighted magnetic resonance imag-
ing (MRI) were excluded. Histologic diagnosis of 
the lesions was reviewed by the study patholo-
gists and validated according to World Health 
Organization guidelines. Patients with cerebral 
arteriovenous malformations were included as 
controls. Written informed consent was provid-
ed by all patients who were 18 years of age or 
older and by both parents of the one patient who 
was younger than 18 years of age. Additional 
details are provided in Supplementary Appendix 1. 
The authors vouch for the accuracy and com-
pleteness of the data in this report.

Genomic Analyses

For formalin-fixed, paraffin-embedded samples, 
all slides were reviewed by a pathologist, and 
punches in the tissue block were performed to 
enrich each sample with lesion cells. Targeted 
deep sequencing of genomic DNA extracted from 
the lesions was performed. Molecular inversion 
probes were designed with the use of MIPgen to 
capture the exonic bases and exon–intron bound-
aries of CCM1, CCM2, and CCM3 and the recur-
rent variants of AKT1 (p.E17K) and PIK3CA 
(p.E542K, p.H1047R, and p.H1047L) on the ca-
nonical transcripts. Droplet digital PCR (ddPCR) 
was performed to orthogonally validate the PIK3CA 
and AKT1 mutations. Additional details of the 
genomic analyses are provided in Supplementary 
Appendix 1.
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R esult s

Mice with Somatic Pik3ca and AKT1 Mutations

We analyzed a cohort of 37 PGDSCre;R26-
Pik3caH1047R mice (referred to as Pik3caH1047R mice 
hereafter; mean follow-up, 7.9 months) (Fig. S1 
and Table S1 in Supplementary Appendix 1). On 
autopsy, only 1 mouse (3%) was found to have a 
grade I meningothelial meningioma (Fig. S2). To 
our surprise, 8 mice with weight loss or hemi-
plegia (22%; mean age at diagnosis, 2.4 months) 
were found to have intraparenchymal CCM le-
sions, most of which were located in the brain 
stem (Fig. 1A–1F). Histologically, the lesions 
ranged from intraparenchymal vessel dilatations 
to capillary telangiectasia and clusters of capil-
lary telangiectasia forming “young” cavernoma-
tous lesions, thus retracing the natural history of 
CCM formation in mice (Fig. 1G–1L). Of the 37 
mice, 10 (27%) had meningothelial proliferations 
(Fig. S2). We then generated a second cohort of 
21 Pik3caH1047R mice, a subset of which we ana-
lyzed at the onset of clinical symptoms (3 mice; 
onset at 3, 4, and 5 weeks of age): these mice 
had intraparenchymal CCMs in the brain stem.

We also analyzed a cohort of 35 asymptom-
atic PGDStv-a;RCAS-AKT1E17K mice (Fig. S1 and 
Table S1); on autopsy, none were found to have 
meningioma (mean follow-up, 14.5 months); 
2 mice (6%) had convexity osteomas with adja-
cent meningothelial proliferation, the first step 
in meningioma tumorigenesis14,15 (Fig. S3). It was 
notable that 4 mice (11%) had large intraparen-
chymal CCMs (Fig. 2A and 2B), which, in con-
trast to findings in the first model, were histo-
logically mature and developed later (mean age at 
diagnosis, 13.5 months). In all cases, the intra-
parenchymal lesions were superficial, located near 
the injection site in the forebrain (Fig. 2C and 2D), 
and associated with AKT1E17K expression (Fig. 2E).

Somatic PIK3CA Mutations in Human Sporadic CCMs

We then performed targeted DNA sequencing in 
a series of 88 sporadic CCMs (Table S2 [note that 
Tables S2 through S7 are provided in Supple-
mentary Appendix 2]) to investigate the involve-
ment of activating PIK3CA and AKT1 mutations. 
Given the small number of endothelial cells 
lining the caverns, we conducted targeted sequenc-
ing of the three CCM genes and the hotspot muta-
tions in PIK3CA (E542K, H1047R, and H1047L) 
and AKT1 (E17K). We found that 28 CCMs (32%) 
had a PIK3CA mutation (PIK3CAE542K in 16 cases, 

PIK3CAH1047R in 10 cases, and PIK3CAH1047L in 2 cas-
es). There was no predominant anatomical location 
for PIK3CA-mutant CCMs (Fig. 3). Four PIK3CA-
mutant samples also had mutations in CCM2 
(Patient 1), CCM1 and AKT1 (Patient 5), or CCM1 
(Patients 7 and 9); co-occurrence of mutations in 
PIK3CA with mutations in other genes is frequent-
ly seen in tumors. We also found one CCM2 muta-
tion (Patient 4) and 2 CCM1 mutations (Patients 
6 and 8). Finally, two samples harbored multiple 
mutations in CCM genes: one (Patient 2) had two 
loss-of-function CCM2 mutations16 and a CCM1 
substitution of unknown pathologic significance, 
and the other (Patient 3) had two mutations (one 
in CCM1 and one in CCM3) with similar variant-
allele frequencies, both of which are described 
in the COSMIC database (Fig. 3 and Tables S3 
and S4).

A total of 78 of the CCM samples, including 
3 for which paired blood samples were available, 
had remaining DNA that we used for orthogonal 
validation by ddPCR analysis. To assay sequence 
artifacts in DNA samples isolated from formalin-
fixed, paraffin-embedded tissue, we genotyped, 
in parallel, AKT1E17K, PIK3CAE542K, PIK3CAH1047L, and 

Figure 1 (facing page). Characterization of Mouse 
Pik3caH1047R CCMs.

Panel A is a whole-mount view of a dissected brain show-
ing a cerebral cavernous malformation (CCM) in the brain 
stem of a 1-month-old PGDSCre;Pik3caH1047R mouse 
(scale bar, 1 mm). Panel B shows a section through the 
lesion in which blood-filled caverns are visible (scale bar, 
200 μm). Panel C shows in situ hybridization, with prosta-
glandin D2 synthase (Pgds) messenger RNA expression in 
pericavernomatous cells (scale bar, 50 μm). Panels D, E, 
and F show representative examples of CCMs located in the 
brain stem of 3.2-month-old (Panel D), 1-month-old (Panel 
E), and 2.8-month-old (Panel F) PGDSCre;Pik3caH1047R 
mice (scale bar, 2 mm). Panel G shows dilated capillar-
ies in normal brain parenchyma (asterisks) (scale bar, 
100 μm). Panel H shows the formation of noncoalescent 
intraparenchymal telangiectasias with preserved spheri-
cal structure (asterisks) (scale bar, 100 μm). Panel I shows 
fusion of adjacent telangiectasias with a thin band of 
residual brain parenchyma between the two caverns 
(arrowheads) (scale bar, 100 μm). Panel J shows immuno-
histochemical detection of PGDS-positive cells around di-
lated blood vessels (scale bar, 50 μm). The inset shows 
an example of a PGDS-positive cell bordering a cavern 
(arrow). Panel K shows Masson’s trichrome staining  
of a brain-stem lesion with thin borders separating the 
caverns (scale bar, 2 mm). The inset shows an example 
of a more mature human cavernoma, with thick blue 
collagen fibers separating the caverns. Panel L shows 
an example of intraluminal thrombi found in some CCMs 
(scale bar, 100 μm).
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PIK3CAH1047R in 11 formalin-fixed, paraffin-embed-
ded samples of arteriovenous malformations. The 
false positives in these samples did not exceed a 
fractional abundance of 0.1%. We therefore se-
lected a threshold for fractional abundance of 0.5% 
for both PIK3CA and AKT1E17K mutations, with a 
requirement of at least five positive droplets, as 
described previously.17 We confirmed all PIK3CA
mutations and the single AKT1 mutation detected 
by next-generation sequencing (fractional abun-
dance, 1.55 to 15% and 1.6%, respectively) and 

identified PIK3CA variants in 6 additional sam-
ples (fractional abundance, 1.95 to 4.25%) (Figs. 
3 and S4 and Table S3). We found no PIK3CA or 
AKT1 mutations in the control series of arterio-
venous malformations.

In total, 39 sporadic CCMs in our cohort were 
found to harbor somatic variants in PIK3CA, one 
of the three CCM genes, or AKT1; variants in 
PIK3CA were most prevalent (39% of all samples). 
CCM genes were found to be mutated in 10% of 
samples and AKT1 in 1%.
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We then evaluated the histologic characteris-
tics of PIK3CA-mutant and AKT1-mutant CCMs in 
mice as compared with those in humans and 
observed that the former recapitulated all the key 
features of human CCMs (Fig. S5A–S5J). Similar 
to CCM-mutant lesions in humans, PIK3CA-mutant 
CCMs in humans and mice showed increased 
phosphorylation of myosin light chain (Fig. S5K 
and S5L). We confirmed activation of the PI3K–
AKT–mTOR pathway in PIK3CA-mutant CCMs in 
humans and mice by means of phospho-S6 ribo-
somal protein immunohistochemical analysis 
(Fig. S5M–S5R).

 Cellular Origin of Mouse Lesions

Our mouse models harbored activating muta-
tions in Pik3ca or AKT1 in PGDS-expressing cells. 
Although PGDS is expressed in meningeal pre-
cursor cells during embryogenesis and its expres-

sion is sustained in the meninges throughout 
life, it is also expressed in perivascular cells in 
intraparenchymal vessels, which coexpress the 
pericyte marker platelet-derived growth factor 
beta (PDGFRβ) (Fig. S6). We infer from these 
data that PGDS is expressed in pericytes sur-
rounding intraparenchymal vessels, a finding 
consistent with those of another study.18 PGDS 
immunostaining identified scattered PGDS-pos-
itive cells lining the caverns outside the endothe-
lial border in lesions in both models (Figs. 1J 
and 2F), and we detected a few PGDS-positive 
periendothelial cells around the caverns of hu-
man CCMs (Fig. 2F, inset).

To characterize the PGDS-positive cell of ori-
gin in the murine lesions, we used the AKT1E17K

mouse, which, by virtue of the FLAG epitope pres-
ent in the RCAS-AKT1E17K vector, allows unequivo-
cal identification of cells expressing AKT1E17K. 

Figure 2. Characterization of Mouse AKT1E17K CCMs.

Panel A shows the macroscopic appearance of a right cerebral cortical lesion in a 13-month-old PGDStv-a;RCAS-AKT1E17K

mouse (scale bar, 5 mm). Panel B shows an example of a frontal lobe CCM in a 13-month-old PGDStv-a;RCAS-AKT1E17K

mouse (scale bar, 2 mm). Panel C shows the lesions, which consist of tortuous dilated vascular channels lined with a 
single layer of endothelium without intervening parenchyma (arrowheads), similar to human CCMs. Cavities are filled 
with erythrocytes along with intraluminal and parietal thrombi (asterisk); also evident are clusters of siderophages, 
lymphocyte infiltrates, and reactive gliosis, indicating past hemorrhages (scale bar, 500 μm). Panel D shows a cere-
bral cortical lesion formed by the coalescence of several small cavities with intraluminal thrombi (scale bar, 500 μm). 
The inset shows endothelial cells of neovessels (arrows) that line the cavities. Panel E shows FLAG immunohistochemi-
cal staining, which detected AKT1E17K expression in pericavernous cells of a mouse CCM, in the arachnoid cells of menin-
gothelial proliferations, and in cells bordering CCMs (arrow), suggesting that the lesions are associated with AKT1E17K

expression (scale bar, 100 μm). Panel F shows PGDS immunohistochemical staining, which indicates the presence of 
scattered PGDS-positive cells (arrow) boarding the intraparenchymal caverns without any contact with the meninges 
(scale bar, 50 μm). The inset shows a human CCM lesion with PGDS-positive cells bordering vascular channels (arrow).
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We performed double immunolabeling with FLAG 
and cell-type–specific markers (CD31 for endo-
thelial cells, glial fibrillary acidic protein [GFAP] 
for astrocytes, and oligodendrocyte transcription 
factor 2 [OLIG2] for oligodendrocytes) and then 
counted immunolabeled cells within the region 
between the injection site and the lesion. A mean 
of 25% of pericavernomatous cells were FLAG-
positive, and no pericavernomatous cells were 
CD31-positive (Fig. S7A–S7C and S7E) or GFAP-
positive (Fig. S7D and S7F); some cells, primar-
ily along the tissue scar, were positive for both 
FLAG and OLIG2 (Fig. S7G–S7I). The cytoplas-
mic rather than nuclear staining of OLIG2, how-
ever, suggested that these cells were reactive 
astrocytes.19 The vast majority (98%) of observed 
FLAG-positive pericavernomatous cells also ex-
pressed PDGFRβ (Fig. S7J–S7L). Taken together, 
these observations are consistent with PGDS-
positive pericytes being the origin of the CCM 
lesions in our mouse models.

Discussion

Somatic activating mutations in oncogenes of the 
RAS–RAF–MAPK and PI3K–AKT–mTOR pathways 
— for example, KRAS,17 BRAF,20 and MAP2K121 — 
have been reported in sporadic vascular malfor-
mations, including high-flow and low-flow limb 
malformations and high-flow brain arteriovenous 
malformations. Our data show that sporadic 
CCMs (low-flow brain vascular malformations) 
also result from activating mutations in the 
PI3K–AKT–mTOR pathway, mainly in PIK3CA. In 
sporadic CCMs, the incidence of activating mu-
tations in PIK3CA far exceeds that of activating 
mutations in CCM1, CCM2, and CCM3, the genes 
that cause familial (and some sporadic) CCMs.6 
These findings are in line with the occurrence of 
CCMs and other vascular malformations in rare 
overgrowth disorders, including CLOVES (con-
genital lipomatous overgrowth, vascular malfor-
mations, epidermal nevi, and spinal or skeletal 
anomalies) syndrome, which is associated with 
activating mutations in PIK3CA22; the Klippel–
Trenaunay syndrome,23,24 which is also PIK3CA-
related25; and the Proteus syndrome, which is 
caused by the AKT1E17K mutation26 and may also 
involve multiple meningiomas.27,28 Somatic activat-
ing mutations in PIK3CA have also been reported 
in sporadic venous malformations.29

The causative nature of both PIK3CA and 
AKT1 mutations in sporadic CCMs was observed 

in two mouse models that had initially been en-
gineered for the purpose of studying meningeal 
tumorigenesis. Both models differed from previ-
ous models generated by means of inducible, 
endothelium-specific deletion of Ccm1, Ccm2, or 
Ccm3 in neonatal mice, in all of which lesions 
develop exclusively in the cerebellum.30 In our 
models, we found CCM lesions mostly in the 
brain stem (Pik3caH1047R-related) or, in older mice, 
in the convexity (AKT1E17K-related), similar to 
models generated with neural progenitor–specific 
promoters.31 It is not possible to determine wheth-
er these differences are linked to the causative 
mutation (Pik3caH1047R vs. AKT1E17K) or to the meth-
od used to generate the two mouse models (ge-
netic engineering vs. direct intracranial injection).

In sporadic CCMs in humans, we found that 
the frequency of PIK3CA mutations was high 
(39%), albeit lower than that of KRAS mutations 
(62%) in brain arteriovenous malformations.17 
However, although the fractional abundance of 
KRAS mutations varied between 0.5% and 6%,17 
we found 14 CCMs with a fractional abundance of 
PIK3CA variant surpassing 8%, despite the appar-
ently small number of mutant cells surrounding 
the caverns. In a previous study,20 the prevalence 
of somatic mutations in genes in the RAS–MAPK 
pathway in low-flow vascular malformations was 
3.7% (5 of 135), and the fractional abundance of 
mutant alleles varied between 2% and 7%.

Studies in mice have shown that CCMs might 
originate from clonal expansion of a few mutant 
endothelial cells that express stem-cell markers 
and attract surrounding wild-type endothelial cells 
to contribute to cavernoma growth,32,33 which 
would account for the very small number of mu-
tant cells around the caverns. Indeed, it was 
previously reported that, depending of the pro-
portion of mutant cells within the lesion, direct 
sequencing of DNA extracted from CCMs does 
not always detect the mutation. In early studies 
in which repeated cycles of amplification and 
subcloning were used, somatic mutations were 
identified in all three forms of familial CCM,34,35 
whereas in a more recent analysis, in which tar-
geted next-generation sequencing of sporadic 
CCMs has been performed, somatic mutations 
in CCM genes were detected in 4 of 11 samples 
(36%).6 The number of clones harboring the so-
matic mutation varied between 0.4% and 7.2%, 
a finding similar to ours.

Six sporadic CCMs harbored multiple muta-
tions, including two with mutations affecting 
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two different CCM genes and four with co-occur-
rence of CCM gene and PIK3CA variants. Cases of 
somatic double CCM-gene mutants are rare if not 
absent from the literature, and we know of one 
report of concomitant germline pathogenic mu-
tations in a patient with multiple CCMs.36 Be-
cause the two mutations (one in CCM1 and one 
in CCM3) in the CCM of one patient had similar 
allele frequencies and are known to be patho-
genic, it is difficult to determine whether one is 
a driver of CCM formation and the other is a 
passenger. The other patient had a CCM with 
concomitant CCM2 and CCM1 variants, but the 
latter is of unknown pathologic significance and 
may be irrelevant to CCM formation. The occur-
rence of CCM and PIK3CA mutations in the same 
lesion is less surprising, considering that in 
meningioma, PIK3CA mutations may occur alone 
or in association with TRAF7 mutations.9,10 These 
results add new evidence regarding the similari-
ties between cavernomas and meningiomas, in 
light of the fact that some persons with constitu-
tive CCM3 mutations can have not only multiple 
CCMs but also dura-based lesions that have the 
typical MRI and histopathological features of 
meningioma.37

Our results shed light on the cell of origin of 
CCMs, which is generally considered to be of 
endothelial lineage on the basis of genetically 
engineered mouse models.38 CCM lesions also 
form after deletion of Ccm3 in neural progenitor 

cells,31 leading to the hypothesis that CCMs 
form as a result of altered interactions between 
the components of the neurovascular unit. How-
ever, a recent study suggested that increased trans-
forming growth factor β signaling in brain peri-
cytes triggers changes in endothelial behavior 
and acquisition of pathologic landmarks associat-
ed with CCMs,39 and mural cell-specific deletion 
of Ccm3 induces formation of CCMs in mice.40 
Our findings support the hypothesis that aber-
rant signaling in the pericyte causes CCMs. 
PGDS is not expressed in endothelial cells but is 
expressed in perivascular cells lying outside the 
basement membrane of blood vessels in the pia–
arachnoid and subpial cortex,41 and we were able 
to confirm the existence of perivascular PGDS-
expressing and PDGFRβ-expressing cells in our 
mouse model. These PGDS-positive pericytes may 
have a direct role in the neurovascular unit, 
which would support a role in CCM formation.

Our findings may provide a new understand-
ing of the biology of sporadic CCMs. Rather than 
somatic mutations in the CCM genes playing a 
major causative role,4-6 somatic mutations in the 
PI3K–AKT–mTOR pathway predominated in our 
study. This result, which was supported by find-
ings in a preclinical model, offers potential for 
the development of targeted therapies for the 
treatment of sporadic human PIK3CA-mutated 
CCMs that are refractory to surgery and radio-
therapy or radiosurgery and cause frequent com-
plications, especially given that PIK3CA inhibi-
tors have shown promising results in patients 
with CLOVES syndrome42 as well as in patients 
with a wide range of tumors.43
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